

Universidad Juárez Autónoma de Tabasco

División Académica de Ciencias Económico Administrativas

Modelo de asignación, Administración de proyectos y modelos de inventarios.

Nombre:

Yuliana Vázquez García.

Asignatura:

Investigación de operaciones

Docente:

Cesar Andrés González Hernández

Fecha:

13 septiembre 2024

Contenido

Introducción.	3
Modelo de asignación, administración de proyectos y modelos de inventarios	4
Descripción del modelo y formulación	4
Solución por el método apropiado	4
Determinación del modelo mas apropiado para una situación real.	5
Terminología de PERT y CPM	5
Fases para el desarrollo de un proyecto.	7
Formulación de redes para emplear PERT/1costo	8
Formulación de redes para emplear PERT/tiempo	9
Formulación de redes para emplear CPM	9
Componentes de costos de los modelos de inventarios	10
Modelo de lote económico	11
Política optima de inventario para el modelo básico EOQ	12
Modelos EOQ con faltante planeados	12
Modelos EOQ con descuentos por volumen	14
Modelos EOQ con abastecimiento gradual.	14
Mapa mental.	17
Conclusión	18
Referencias	19

Introducción.

En esta actividad hablaremos sobre los modelos de asignación administración de proyectos y modelos de inventarios hablaremos primero sobre las descripción de los modelos y las formulaciones la solución es por el método apropiado además veremos las terminologías de PERT y CPM y las fases del desarrollo de un proyecto al igual que también la formulación de las redes para emplear el PERT del método de costo y tiempo y la formulación de redes para emplear el CPM veremos costos de los modelos de los inventarios un modelo de lote económico política óptima de inventario para modelo básico de El EOQ y distintas variables de este mismo modelo además de un mapa mental enfocado en el cuarto tema que es la terminología de PERT y CPM

Modelo de asignación, administración de proyectos y modelos de inventarios.

Descripción del modelo y formulación

Un modelo matemático es producto de la abstracción de un sistema real, eliminando las complejidades y haciendo suposiciones pertinentes; se aplica una técnica matemática y se obtiene una representación simbólica del mismo.

Un modelo matemático consta al menos de tres elementos o condiciones básicas: Las Variables de decisión, la Función Objetivo y las Restricciones.

Solución por el método apropiado

El modelo de asignación solucionado **por el método húngaro** es un algoritmo diseñado de forma clara y precisa para la **resolución** de problemas de minimización (tiempo, recursos, materiales, costos) y **con** solo agregar un paso (normalización) se pueden resolver casos de maximización (ingresos, producción, ventas).

El método húngaro es un algoritmo que se utiliza para resolver problemas de asignación, minimizando costos, recursos, tiempo o materiales.

El algoritmo húngaro se basa en la idea de que, si se suma o resta un número a todas las entradas de una fila o columna de una matriz de costos, la asignación óptima de la matriz resultante también será óptima para la matriz original.

Para resolver un problema de asignación con el método húngaro, se pueden seguir los siguientes pasos:

- Marcar las filas que no tienen asignación
- Marcar las columnas que tienen ceros en la fila marcada
- Marcar las filas que tienen asignación en la columna marcada
- Marcar las columnas que tienen asignaciones en la fila marcada
- Repetir el proceso hasta obtener un circuito cerrado

El método húngaro también se conoce como método de los ceros o método de König.

Determinación del modelo mas apropiado para una situación real.

se debe considerar el problema y definir un modelo matemático que lo represente. Luego, se puede decidir qué método de resolución es el más adecuado.

La investigación de operaciones (IO) es un procedimiento científico que utiliza técnicas matemáticas, estadísticas y algoritmos para modelar la realidad de los procesos y organizaciones. El objetivo es encontrar la solución a un problema o planteamiento para tomar decisiones más acertadas. Algunos de los métodos más utilizados en la IO son:

- Lógica matemática
- Simulación
- Análisis de redes
- Teoría de colas
- Teoría de juegos
- Programación lineal
- Programación entera
- Programación dinámica
- Programación de red
- Programación no lineal

Terminología de PERT y CPM

Técnica de Evaluación y Revisión de Proyectos (PERT), acrónimo de Program (Project) Evaluation and Review Technique. Es una técnica que se utiliza para gestionar las actividades inciertas de un proyecto, estudiando y representando las tareas para completarlo e identificar el tiempo mínimo requerido de su ejecución. El método PERT utiliza el tiempo como una variable que representa la aplicación de recursos planificada junto con la especificación de rendimiento.

Pasos de la técnica PERT:

- El proyecto se divide en actividades y eventos.
- Después de que se determina la secuencia adecuada, se construye una red.
- Por último, se calcula el tiempo necesario en cada actividad y se determina la ruta crítica.

CPM

Método de ruta crítica (CPM), acrónimo de Critical Path Method. Es un algoritmo estadístico de gestión de proyectos en la que tiene lugar la organización y control de actividades bien definidas. Aquí, se supone que la duración de la actividad es fija y segura, por lo que el CPM es utilizado para calcular la hora de inicio más temprano y más tardía posible para cada actividad.

El proceso en CPM diferencia los caminos críticos y no críticos para reducir el tiempo y evitar la generación de colas. El motivo de la identificación de los caminos críticos es que, si alguna actividad se retrasa, hará que todo el proceso se vea afectado.

Pasos del método CMP:

- Preparar una lista que conste de todas las actividades necesarias para completar un proyecto.
- Calcular el tiempo requerido para completar cada actividad.
- Determinar la dependencia entre las actividades, pues con este, vemos que la
 "ruta crítica" se puede definir como una secuencia de actividades en una red.

Diferencias

- PERT es una técnica de planificación y control del tiempo, a diferencia del CPM, que es un método para controlar los costos y el tiempo.
- Mientras el diagrama PERT evolucionó como proyecto de investigación y desarrollo,
 CPM cambió como uno de construcción.

- PERT se establece de acuerdo con los eventos y CPM se alinea con las actividades.
- En CPM se utiliza un modelo determinista; por el contrario, PERT emplea un modelo probabilístico.
- Hay estimaciones de tres tiempos en PERT, es decir, tiempo optimista, tiempo más probable y tiempo pesimista. Por su parte, solo hay una estimación en CPM.
- El **método** PERT es lo más adecuado para una estimación de tiempo de alta precisión, mientras que CPM es ajustado para una estimación de tiempo razonable.
- PERT se ocupa de actividades impredecibles, pero CPM se ocupa de actividades predecibles.
- PERT se utiliza cuando la naturaleza del trabajo no es repetitiva, a diferencia de CPM que implica el trabajo de naturaleza repetitiva.
- Existe una demarcación entre caminos críticos y no críticos en CPM, que no es en el caso de PERT.

Fases para el desarrollo de un proyecto

Las fases para el desarrollo de un proyecto son: Inicio, Planificación, Ejecución, Supervisión, Cierre.

Algunas metodologías incluyen una quinta fase, llamada control o monitoreo, pero esta fase se puede considerar parte de las fases de ejecución y cierre.

En la fase inicial del proyecto, se lleva a cabo el acta de constitución y el registro de partes interesadas. En esta fase se determina la visión del proyecto, se documenta lo que se

espera lograr y se obtiene la aprobación de la parte con capacidad de decisión. Algunos elementos de un proyecto son:

- Objetivos
- Participantes
- Producto o servicio
- Actividades
- Calendario y planificación de tareas
- Recursos disponibles
- Presupuesto
- Resultados esperados

Formulación de redes para emplear PERT/1costo

La fórmula de PERT para calcular la duración esperada de una tarea es: $(O + (4 \times MP) + P) \div 6$. En esta fórmula, O es la duración optimista, MP es la duración más probable y P es la duración pesimista.

El método PERT/Cost utiliza tres estimaciones de costo para cada actividad para calcular un costo medio para cada tarea. El costo medio total del proyecto es la suma de los costos medios de todas las actividades.

El PERT es una herramienta de gestión que permite planificar las actividades necesarias para realizar una obra. Se utiliza cuando es necesario coordinar distintas actividades. Para crear un diagrama de PERT, se pueden seguir los siguientes pasos:

- Identificar las actividades e hitos del proyecto.
- Dibujar la secuencia de las actividades.
- Estima el tiempo requerido para cada actividad.
- Interpretar cronogramas y determinar la ruta crítica.

• Realizar actualizaciones y compartirlas con las partes interesadas.

Formulación de redes para emplear PERT/tiempo

La fórmula para calcular el tiempo esperado de una actividad en un diagrama de PERT es: E = (O + 4M + P) / 6. En esta fórmula, O es la duración optimista, M es la duración más probable y P es la duración pesimista.

El diagrama de PERT es una técnica que utiliza redes para representar las actividades de un proyecto y sus interdependencias. Con esta técnica se puede calcular el tiempo necesario para completar el proyecto e identificar los caminos críticos.

Para crear un diagrama de PERT, se pueden seguir estos pasos: Enumerar los hitos, Identificar la secuencia, Determinar los criterios de tiempo, Elaborar el diagrama PERT, Complementar el diagrama PERT con una ruta crítica.

El diagrama de PERT se compone de nodos y líneas direccionales que muestran la secuencia de tareas del proyecto. Los nodos representan los eventos o hitos, que son puntos críticos en el cronograma del proyecto.

Formulación de redes para emplear CPM

El método de la ruta crítica (CPM) es una técnica de gestión de proyectos que utiliza un diagrama de red para representar las secuencias de tareas de un proyecto. En este método, las tareas se representan como flechas que conectan dos nodos: el inicio y el fin del proyecto.

Para construir una red PERT-CPM, se pueden seguir los siguientes pasos:

Dibujar nodos o eventos, que son círculos que representan el inicio o fin de las actividades.

Dibujar vectores o flechas, que representan el flujo de las actividades del proyecto.

Para utilizar el método de la ruta crítica, se pueden seguir estos pasos:

• Dividir el proyecto en tareas.

- Representar cada tarea con una flecha.
- Conectar las flechas en la secuencia adecuada.
- Estimar la duración de cada tarea.
- Calcular la duración del proyecto y el nivel de criticidad de cada tarea.
- Identificar el camino crítico.
- Evaluar los recursos.
- Determinar la holgura total.

El método de la ruta crítica también es conocido como análisis de la ruta crítica (CPA)

Componentes de costos de los modelos de inventarios

Los costos de inventario se pueden dividir en tres categorías principales: Costos de pedido, Costos de almacenamiento, Costos de desabastecimiento.

Los costos de inventario son los gastos que una empresa debe asumir para mantener y administrar sus mercancías. Estos gastos pueden incluir:

- Costo de compra
- Costo de producción
- Costo de almacenamiento
- Materias primas
- Seguros
- Impuestos
- Gastos laborales

Los costos de inventario también se pueden dividir en tres componentes conocidos como la regla RER: renta, espacio y riesgo.

Los modelos de inventario se pueden clasificar según un análisis que considera cinco variables representativas: Costos, Demanda, Periodo de aprovisionamiento, Reposición, Restricciones.

Modelo de lote económico

El método EOQ (lote económico) permite optimizar las cantidades en Stock; en el caso relatado en el artículo Suministro de Materiales para un Servicio Técnico de Calibración.

En dicha área de se realizaban verificaciones de equipos con cierta periodicidad, para comprobar que sus medidas predictivas entraban dentro de unas tolerancias preestablecidas. Estas verificaciones se realizaban por un técnico de laboratorio con dedicación de 4 horas diarias con una categoría profesional de Ayudante Técnico.

El laboratorio organizaba sus flujos mediante la metodología FIFO (First In First Out).

El trabajo del técnico consistía en:

- Calibración
- Verificación
- Reparación

con unos tiempos de fabricación que se podrían considerar constantes, pese a variaciones derivadas de los cambios en circuitos electrónicos y ensamblajes que puedan existir en el tiempo de implantación del EOQ en ese laboratorio (10 años).

Los clientes del laboratorio no eran otros que los propios Departamentos de Ingeniería de Mantenimiento y Predictivo, que bien contaban con contratos para este servicio de calibración (en formato periódico) o bien enviaban los equipos tras alguna avería o error en el proceso de lectura.

Generalmente todo ello se incluía dentro de los Contratos Post Venta de Mantenimiento que garantizaban una Carga de Trabajo suficiente para el puesto de Técnico de Laboratorio.

Política optima de inventario para el modelo básico EOQ

El modelo de Cantidad Económica de Pedido (EOQ) es una fórmula que ayuda a las empresas a determinar la cantidad óptima de productos a pedir para minimizar los costos de inventario y lograr un equilibrio entre el servicio y los costos.

La fórmula de la EOQ es EOQ = $\sqrt{(2DS/H)}$, donde:

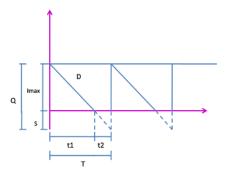
- D es la demanda anual
- S es el costo de pedido
- H es el costo de mantenimiento del inventario

El modelo EOQ se basa en los siguientes supuestos:

- La demanda es constante y conocida
- La frecuencia de uso del inventario es constante
- Los pedidos se reciben cuando se agotan los inventarios

El modelo EOQ tiene varias ventajas, entre las que se encuentran: Equilibrar los niveles de inventario, Reducir el riesgo de residuos y obsolescencia, Optimizar el flujo de caja.

Sin embargo, el modelo EOQ no contempla campañas estacionales, retrasos en las reposiciones o descuentos por volumen de compra.


Modelos EOQ con faltante planeados

Como mencionamos con anterioridad el modelo EOQ, puede tener diversas aplicaciones de esta forma el modelo EOQ Con faltantes, se basa en que la compañía permite que haya tiempos de espera entre un pedido y otro, es decir, que haya pedidos atrasados, de esta manera se supone que hay un tiempo donde la demanda no se satisface a tiempo y se produce una escasez. De todo esto, también en se incurre en un nuevo costo que es el de las unidades faltantes durante el periodo t. De esta forma este modelo de inventario tiene unos supuestos, que se basan en los mismos del EOQ clásico con la diferencia que se agregan:

1. Se permiten las faltantes

- 2. Se incurre en un costo de Faltante
- **3.** La demanda es Constante y conocida: Esto se refiere a que, por ejemplo, si la demanda ocurre a una tasa de 1000 unidades por año, la demanda durante cualquier periodo de t meses será 1000t/12.
- **4.** Los tiempos de reposición son instantáneos: Esto quiere decir que un pedido llega tan pronto se hace.
 - **5.** Existen Costos de hacer un pedido
 - **6.** Existen Costos de Mantener guardado en inventario
 - 7. Los costos de mantener inventario y el costo de pedir no varían en el tiempo.
 - **8.** La cantidad a pedir es constante
 - **9.** Existe una relación directa costo-volumen

De esta manera aparece una cantidad "S" que es la cantidad máxima que permite la empresa como faltante. Observemos la gráfica:

De esta grafica se deduce que la empresa tiene en inventario un inventario máximo, que al consumirse totalmente por la demanda (llega a cero) la empresa está permitiendo que una cantidad S de unidades le falten, para hacer un nuevo pedido que satisfaga la demanda de las unidades faltantes más las de las unidades que se demandan diariamente; de esto tenemos, que:

Imax= Es mi inventario máximo

D=la demanda del periodo t

S= cantidad de unidades de demanda faltantes

Q= cantidad de unidades que se piden.

Q = Imax + S à S = Q - Imax

Modelos EOQ con descuentos por volumen

El modelo EOQ (Cantidad Económica de Pedido) o Sistema EOQ (Economic Order Quantity) es un método para gestionar el stock que considera descuentos por volumen al calcular la cantidad de producto que se debe pedir.

Para calcular el EOQ, se utiliza la fórmula EOQ = $\sqrt{(2DS/H)}$, donde:

D es la demanda anual

S es el costo de pedido

H es el costo de mantenimiento del inventario

En el caso de los descuentos por volumen, la escala de descuento suele estar tabulada y accesible para el comprador. Para determinar el pedido óptimo, se puede considerar que el menor costo no necesariamente se alcanza en el tramo con el menor precio unitario.

El EOQ es una herramienta clave en la logística y gestión de inventarios, ya que ayuda a minimizar los costos de pedido, almacenamiento y reposición del inventario.

Modelos EOQ con abastecimiento gradual.

Este modelo está diseñado para el tipo de situación donde la reposición del inventario se realiza mediante la corrida de un proceso de producción, al mismo tiempo que ocurren retiros a la tasa de demanda. Se supone que la corrida de producción toma un tiempo significativo y que los artículos se transfieren al inventario conforme se fabrican (en lugar de todos juntos al final de la corrida). Sin embargo, una vez que la corrida de producción concluye, el nivel del inventario baja de acuerdo con la tasa de demanda. Después, las instalaciones de producción se preparan de nuevo para comenzar otra corrida cuando el nivel de inventario llega a 0. Este patrón continúa en forma indefinida.

En este contexto, la cantidad a ordenar Q es el número de unidades producidas durante una corrida de producción. Este número se conoce como tamaño del lote de producción. Suposiciones del modelo:

? Una tasa de demanda constante

? Se programa que una corrida de producción inicie cada vez que el nivel de inventario llega a

0 y esta producción reabastece el inventario a una tasa constante durante toda la corrida.

? No se permiten los faltantes planeados

CVT = costo inicial anual + costo de mantener anual

Costo inicial anual = K * D / Q

Costo de mantener anual = h * (Q / 2) (1 - (D / R))

$$CVT = \{(K \times D) / Q\} + \{(h \times Q) / 2\} \{1 - (D / R)\}$$

donde:

D = tasa de demanda anual

R = tasa anual de producción si se produce en forma continua

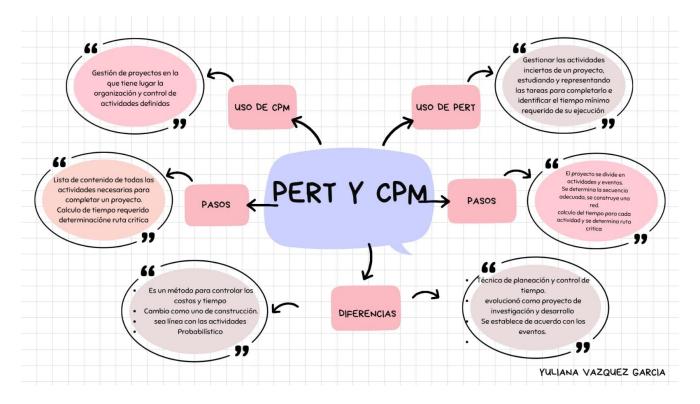
K = costo de preparación

h = costo anual de mantener

La nueva fórmula de raíz cuadrada se deriva de la misma forma descrita para el modelo básico

EOQ. La única razón por la cual difiere, es que el costo de mantener anual para el modelo básico

EOQ ahora se multiplica por el factor (1 - D/R). Este factor se debe a que el nivel máximo de inventario cambia de Q a


= tamaño de lote de producción – demanda durante la corrida de producción

$$= Q - D/R Q$$

$$= (1 - D/R) Q$$

Por tanto, Q^* es $Q^* = v(2KD) / \{h(1-(D/R))\}$

Mapa mental.

Conclusión.

Para concluir podemos decir que todos estos tipos de modelos se pueden basar en proyectos pero cada uno está destinado a una parte específica de este tanto como lo es el diagrama de que puede hacer cualquier tipo de proyecto principalmente en el área de negocios y el diagrama de cpm que se enfoca mucho más en el ámbito de la construcción los modelos de inventarios pues como su nombre lo menciona están basados en los inventarios de las empresas los y las distintas variables de este que nos ayudan a gestionar el stock para que un poquito más complicado porque se consideren descuentos por volumen y la cantidad de producto que se debe pedir además que otros nos ayudan a la corrida de un proceso de producción y los retiros de la tasa de la demanda. Y para cada uno de estos métodos existe una manera de realizarle un diagrama y realizarlo con fórmulas para que nos den resultados específicos y los resultados que deseamos obtener

Referencias.

Diagrama de PERT: ¿Qué es? ¿Cómo hacerlo? Conoce todos sus beneficios. (s. f.). https://miro.com/. https://miro.com/es/gestion-proyectos/que-es-diagrama-pert/

Kuuse, M. (2023, 20 marzo). ¿Qué es la cantidad económica de pedido (EOQ) y la fórmula EOQ? | MRPeasy Blogs. Blog Para Fabricantes y Distribuidores. https://www.mrpeasy.com/blog/es/la-cantidad-economica-de-pedido-eoq/#:~:text=La%20f%C3%B3rmula%20de%20la%20EOQ,costo%20de%20mantenimient o%20del%20inventario.

Predictiva. (2024, 28 junio). *Modelo del lote económico EOQ para la gestión de stocks*. Predictiva21. https://predictiva21.com/modelo-lote-economico-eoq-gestion-stocks/

Quintero, P. (s. f.). *Modelo EOQ (Con faltantes)*. https://investigacionoperacionespao.blogspot.com/p/modelo-eoq-con-faltantes.html

Redirect notice. (s. f.).

https://www.google.com/url?sa=t&source=web&rct=j&opi=89978449&url=https://asana.com/es/resources/pert-

 $chart\%23: \sim : text\%3DPuedes\%2520usar\%2520la\%2520f\%25C3\%25B3rmula\%2520de, promedio\%2520del\%2520cronograma\%2520del\%2520proyecto. \&ved=2ahUKEwib8JuH1suIAxVuMNAFHY64GhwQzsoNegQIBhAH&usg=AOvVaw3a6rJ-$

2ySBimev_ojdepi_4/Modelo%20EOQ%20con%20reabastecimiento%20gradual.pdf